Scientists at the University of California San Diego School of Medicine have created spinal cord neural stem cells (NSC) from embryonic human pluripotent stem cells (hPSCs), which could feasibly represent a source of transplantable cells for repairing spinal cord injuries. Tests showed that the human spinal cord NSCs can be maintained over long periods in culture, and when transplanted into the injured spinal cords of experimental rats, differentiated into all the major neural cell types. The grafts were particularly rich in excitatory neurons, and extended large numbers of axons over long distances, forming synapses with host’s nerve cells, innervating their target structures, and promoting corticospinal regeneration and improvements in the animals’ motor function.

The scientists, headed by Mark Tuszynski, M.D., Ph.D., professor of neuroscience and director of the UC San Diego Translational Neuroscience Institute, suggest that hPSC-derived spinal cord NSCs could also represent a valuable tool for modeling …